تحريك متوسط فترة التنبؤ


المتوسطات المتحركة المتوسطات المتحركة مع مجموعات البيانات التقليدية القيمة المتوسطة غالبا ما تكون الأولى، وإحدى الإحصاءات الموجزة الأكثر فائدة لحساب. وعندما تكون البيانات في شكل سلسلة زمنية، فإن متوسط ​​السلسلة مقياس مفيد، ولكنه لا يعكس الطبيعة الدينامية للبيانات. وغالبا ما تكون القيم المتوسطة المحسوبة على فترات قصيرة، إما قبل الفترة الحالية أو تركزت على الفترة الحالية، أكثر فائدة. لأن هذه القيم المتوسطة سوف تختلف، أو تتحرك، كما تتحرك الفترة الحالية من الوقت ر 2، ر 3. الخ أنها تعرف باسم المتوسطات المتحركة (ماس). المتوسط ​​المتحرك البسيط هو (عادة) المتوسط ​​غير المرجح للقيم السابقة k. المتوسط ​​المتحرك المرجح ألساسا هو نفس المتوسط ​​المتحرك البسيط، ولكن مع المساهمات في المتوسط ​​المرجح بقربها من الوقت الحالي. لأنه ليس هناك واحد، ولكن سلسلة كاملة من المتوسطات المتحركة لأي سلسلة معينة، ومجموعة من ماس يمكن أن تكون نفسها رسمت على الرسوم البيانية، وتحليلها على شكل سلسلة، وتستخدم في النمذجة والتنبؤ. ويمكن بناء مجموعة من النماذج باستخدام المتوسطات المتحركة، وتعرف هذه النماذج بنماذج ما. إذا تم الجمع بين هذه النماذج ونماذج الانحدار الذاتي (أر)، فإن النماذج المركبة الناتجة تعرف باسم نماذج أرما أو أريما (I هي متكاملة). المتوسطات المتحركة البسيطة منذ يمكن اعتبار سلسلة زمنية كمجموعة من القيم، t 1،2،3،4، n يمكن حساب متوسط ​​هذه القيم. إذا افترضنا أن n كبير جدا، ونحن نختار عدد صحيح k الذي هو أصغر بكثير من n. يمكننا حساب مجموعة من متوسطات الفدرات أو متوسطات متحركة بسيطة (للترتيب k): يمثل كل قياس متوسط ​​قيم البيانات على مدى فاصل من ملاحظات k. لاحظ أن أول ما ممكن من النظام gt0 k هو أن ل t ك. وبوجه أعم يمكننا إسقاط الجزء الإضافي الإضافي في التعبيرات أعلاه والكتابة: وهذا يشير إلى أن المتوسط ​​المقدر في الوقت t هو المتوسط ​​البسيط للقيمة الملحوظة في الوقت t والخطوات السابقة k -1 الزمنية. إذا تم تطبيق الأوزان التي تقلل من مساهمة الملاحظات التي هي أبعد من ذلك في الوقت المناسب، ويقال أن المتوسط ​​المتحرك تمهيد أضعافا مضاعفة. وغالبا ما تستخدم المتوسطات المتحركة كشكل من أشكال التنبؤ، حيث القيمة المقدرة لسلسلة في الوقت t 1، S t1. يؤخذ على أنه ما للفترة حتى تصل إلى الوقت t. مثلا يستند تقدير اليوم إلى متوسط ​​القيم المسجلة سابقا حتى يوم الأمس (بالنسبة للبيانات اليومية). ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد. في المثال الموضح أدناه، تم تعزيز مجموعة بيانات تلوث الهواء المبينة في مقدمة هذا الموضوع بمتوسط ​​متحرك لمدة 7 أيام (ما)، موضح هنا باللون الأحمر. كما يمكن أن يرى، خط ما ينعم القمم وأحواض في البيانات ويمكن أن تكون مفيدة جدا في تحديد الاتجاهات. وتعني الصيغة القياسية للحساب الآجل أن نقاط البيانات K -1 الأولى ليس لها قيمة ما، ولكن بعد ذلك تمتد الحسابات إلى نقطة البيانات النهائية في السلسلة. PM10 القيم المتوسطة اليومية، غرينتش المصدر: شبكة لندن لجودة الهواء، londonair. org. uk سبب واحد لحساب المتوسطات المتحركة البسيطة بالطريقة الموصوفة هو أنه يمكن القيم التي سيتم حسابها لجميع الفواصل الزمنية من الزمن تك حتى الوقت الحاضر، و كما يتم الحصول على قياس جديد للوقت ر 1، و ما للوقت ر 1 يمكن أن تضاف إلى مجموعة تحسب بالفعل. وهذا يوفر إجراء بسيطا لمجموعات البيانات الديناميكية. ومع ذلك، هناك بعض القضايا مع هذا النهج. ومن المعقول القول بأن القيمة المتوسطة خلال الفترات الثلاث الأخيرة، على سبيل المثال، ينبغي أن تكون موجودا في الوقت t -1، وليس الوقت t. ولمادة ما على عدد من الفترات ربما ربما ينبغي أن يكون موجودا في منتصف نقطة بين فترتين زمنيتين. حل لهذه المسألة هو استخدام الحسابات ما محورها، حيث ما في الوقت t هو متوسط ​​مجموعة متماثلة من القيم حول ر. وعلى الرغم من مزاياه الواضحة، فإن هذا النهج لا يستخدم عموما لأنه يتطلب توافر البيانات للأحداث المقبلة، وهو ما قد لا يكون كذلك. في الحالات التي يكون فيها التحليل بالكامل لسلسلة حالية، قد يكون استخدام ماس المركزة أفضل. ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد، وإزالة بعض المكونات عالية التردد من سلسلة زمنية وتسليط الضوء على الاتجاهات (ولكن ليس إزالتها) بطريقة مماثلة للمفهوم العام للتصفية الرقمية. في الواقع، المتوسطات المتحركة هي شكل من أشكال المرشحات الخطية. فمن الممكن تطبيق حساب متوسط ​​متحرك لسلسلة تم تمهيدها بالفعل، أي تمهيد أو تصفية سلسلة سلسة بالفعل. على سبيل المثال، مع متوسط ​​متحرك من النظام 2، يمكننا أن نعتبر أنه يحسب باستخدام الأوزان، وبالتالي فإن ما في x 2 0.5 × 1 0.5 × 2. وبالمثل، فإن ما في x 3 0.5 × 2 0.5 × 3. إذا نحن (0.5 × 0.5 0.5 × 0.5) 0.5 (0.5 × 2 0.5 × 3) 0.25 × 1 0.5 × 2 0.25 × 3 أي الترشيح ذي المرحلتين (أو التفاف) قد أنتج متوسط ​​متحرك متماثل مرجح، مع أوزان. يمكن أن تنتج العديد من المحولات التحويلية متوسطات متحركه معززة جدا، وبعضها تم العثور على استخدام معين في المجالات المتخصصة، كما هو الحال في حسابات التأمين على الحياة. يمكن استخدام المتوسطات المتحركة لإزالة التأثيرات الدورية إذا تم حسابها مع طول التواتر كما هو معروف. على سبيل المثال، مع التغيرات الشهرية في البيانات الموسمية يمكن في كثير من الأحيان إزالتها (إذا كان هذا هو الهدف) من خلال تطبيق متماثل المتوسط ​​المتحرك لمدة 12 شهرا مع جميع الشهور المرجحة بالتساوي، باستثناء الأولى والأخيرة التي يتم وزنها بنسبة 12. هذا لأن هناك سوف يكون 13 شهرا في النموذج المتماثل (الوقت الحالي، ر - 6 أشهر). وينقسم المجموع إلى 12. ويمكن اعتماد إجراءات مماثلة لأي دورية محددة جيدا. المتوسطات المتحركة المرجحة أضعافا مضاعفة (إوما) مع صيغة المتوسط ​​المتحرك البسيط: جميع المشاهدات متساوية بالتساوي. إذا اتصلنا هذه الأوزان متساوية، ألفا ر. فإن كل وزن من الأوزان k يساوي 1 ك. وبالتالي فإن مجموع الأوزان سيكون 1، والصيغة ستكون: لقد رأينا بالفعل أن تطبيقات متعددة من هذه العملية يؤدي إلى الأوزان متباينة. مع المتوسطات المتحركة المرجح أضعافا مضاعفة الإسهام في القيمة المتوسطة من الملاحظات التي هي أكثر إزالتها في الوقت يتم تخفيض مداولات، مما يؤكد على الأحداث الأخيرة (المحلية). في الأساس، يتم عرض معلمة التمهيد 0 ألف طن lt1، وتنقح الصيغة إلى: تكون الصيغة المتماثلة لهذه الصيغة بالشكل التالي: إذا تم تحديد الأوزان في النموذج المتماثل كعبارات لشروط التوسع ذي الحدين، (1212) 2q. فإنها سوف تلخص 1، وكما ف يصبح كبيرا، وتقريب توزيع عادي. هذا هو شكل من أشكال الترجيح النواة، مع الحدين تعمل بوصفها وظيفة النواة. التلازم المرحلة الثانية وصفها في القسم الفرعي السابق هو على وجه التحديد هذا الترتيب، مع س 1، مما أسفر عن الأوزان. في التمهيد الأسي فمن الضروري استخدام مجموعة من الأوزان التي مجموع إلى 1 والتي تقلل في حجم هندسيا. وعادة ما تكون الأوزان المستخدمة من النموذج: لإظهار أن هذه الأوزان توازي 1، فكر في توسيع 1 كمجموعة. يمكننا كتابة وتوسيع التعبير بين قوسين باستخدام الصيغة ذات الحدين (1- x) ص. حيث x (1) و p -1، مما يعطي: ثم يوفر نموذجا من المتوسط ​​المتحرك المرجح للنموذج: يمكن كتابة هذا الملخص كعلاقة تكرار: مما يبسط الحساب بشكل كبير، ويتجنب مشكلة أن نظام الترجيح يجب أن يكون بدقة لانهائية للأوزان لتلخص 1 (لقيم صغيرة من ألفا، وهذا هو عادة ليست هي القضية). تختلف الرموز المستخدمة من قبل مؤلفين مختلفين. يستخدم البعض الحرف S للإشارة إلى أن الصيغة هي في الأساس متغير أملس، وكتب: في حين أن أدبيات نظرية التحكم غالبا ما تستخدم Z بدلا من S للقيم المرجحة أو الممهدة أضعافا مضاعفة (انظر، على سبيل المثال، لوكاس و ساكوتشي، 1990، LUC1 ، وموقع نيست لمزيد من التفاصيل وأمثلة العمل). الصيغ المذكورة أعلاه مستمدة من عمل روبرتس (1959، ROB1)، ولكن هنتر (1986، HUN1) يستخدم تعبيرا عن النموذج: الذي قد يكون أكثر ملاءمة للاستخدام في بعض إجراءات التحكم. مع ألفا 1 متوسط ​​التقدير هو ببساطة قيمته المقاسة (أو قيمة عنصر البيانات السابق). مع 0.5 التقدير هو المتوسط ​​المتحرك البسيط للقياسات الحالية والسابقة. في نماذج التنبؤ القيمة، S t. وكثيرا ما يستخدم كقيمة تقديرية أو توقعية للفترة الزمنية القادمة، أي كالتقدير ل x في الوقت t 1. وهكذا لدينا: وهذا يدل على أن القيمة المتوقعة في الوقت t 1 هي مزيج من المتوسط ​​المتحرك المرجح أضعافا سابقا بالإضافة إلى مكون يمثل خطأ التنبؤ المرجح، إبسيلون. في الوقت t. على افتراض أن سلسلة زمنية تعطى وتوقعات مطلوب، قيمة ألفا هو مطلوب. ويمكن تقدير ذلك من البيانات الموجودة عن طريق تقييم مجموع أخطاء التنبؤ التربيعية التي يتم الحصول عليها مع قيم متفاوتة ألفا لكل t 2،3. (1) في تطبيقات التحكم، تكون قيمة ألفا مهمة في ذلك يستخدم في تحديد حدود التحكم العليا والسفلى، ويؤثر على متوسط ​​طول التشغيل (أرل) المتوقع قبل أن يتم كسر حدود السيطرة هذه (على افتراض أن السلاسل الزمنية تمثل مجموعة من المتغيرات المستقلة العشوائية الموزعة بشكل مماثل مع التباين المشترك). وفي ظل هذه الظروف يكون التباين في إحصائية التحكم: (لوكاس أند ساكوتشي، 1990): وعادة ما تحدد حدود المراقبة كمضاعفات ثابتة لهذا التباين المتناظر، على سبيل المثال. - 3 مرات الانحراف المعياري. إذا افترض 0.25، على سبيل المثال، ويفترض أن البيانات التي يجري رصدها يكون توزيع عادي، N (0،1)، عندما تكون في السيطرة، ستكون حدود التحكم - 1.134 وسوف تصل العملية إلى حد أو حد آخر في 500 خطوة في المتوسط. لوكاس و ساكوتشي (1990 LUC1) تستمد أرلز لمجموعة واسعة من قيم ألفا وتحت مختلف الافتراضات باستخدام إجراءات ماركوف شين. وهي تقوم بتبويب النتائج، بما في ذلك توفير أرلس عندما يكون متوسط ​​عملية التحكم قد تم نقله من قبل بعض مضاعفات الانحراف المعياري. على سبيل المثال، مع التحول 0.5 مع ألفا 0.25 و أرل أقل من 50 خطوة الوقت. ومن المعروف أن النهج المذكورة أعلاه تمهيد الأسي واحد. حيث يتم تطبيق الإجراءات مرة واحدة على السلاسل الزمنية ومن ثم يتم إجراء عمليات التحليل أو التحكم على مجموعة البيانات التي تم تمريرها. إذا كانت مجموعة البيانات تشتمل على مكونات موسمية ومؤثرة، يمكن تطبيق التمهيد الأسي على مرحلتين أو ثلاث مراحل كوسيلة لإزالة (هذه النماذج بشكل صريح) (انظر كذلك القسم الخاص بالتنبؤ أدناه، ومثال نيست العامل). CHA1 شاتفيلد C (1975) تحليل سلسلة تايمز: النظرية والتطبيق. تشابمان أند هول، لندن HUN1 هنتر J S (1986) المتوسط ​​المتحرك المرجح أضعافا مضاعفة. J من كواليتي تيشنولوغي، 18، 203-210 LUC1 لوكاس J M، ساكوتشي M S (1990) المتوسط ​​المتحرك لأسفل متحكم في مخططات التحكم: الخصائص والتحسينات. تيشنوميتريكس، 32 (1)، 1-12 ROB1 روبرتس S W (1959) اختبارات التحكم في الرسم البياني استنادا إلى المتوسطات المتحركة الهندسية. تيشنوميتريكس، 1، 239-250 في الممارسة العملية، سيوفر المتوسط ​​المتحرك تقديرا جيدا لمتوسط ​​السلاسل الزمنية إذا كان المتوسط ​​ثابتا أو متغيرا ببطء. وفي حالة المتوسط ​​الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط ​​الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط ​​الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ​​ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط ​​الضوضاء العشوائية من التوزيع العادي مع متوسط ​​الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط ​​السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط ​​المتوسط ​​المتحرك للمتوسط ​​في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط ​​المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط ​​المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط ​​المتحرك يقلل من الملاحظات نظرا لأن المتوسط ​​يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط ​​قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط ​​المتحرك. التحيز عندما يكون المتوسط ​​يزداد سلبيا. أما بالنسبة للمتوسط ​​المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط ​​تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط ​​المتوسط ​​المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط ​​التقدير المتحرك إلى افتراض متوسط ​​ثابت، والمثال له اتجاه خطي في المتوسط ​​خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط ​​المتحرك البالغ 5 من المتوسط ​​المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط ​​المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ​​ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط ​​المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط ​​المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط ​​المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط ​​المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط ​​الانحراف المتوسط ​​في الخلايين E6 و E7 على التوالي .7.7 فترات التنبؤ كما نوقش في القسم 17. تعطي فاصل التنبؤ فاصلا نتوقع فيه أن تكون Y مع احتمال محدد. على سبيل المثال، بافتراض أن أخطاء التنبؤ غير مترابطة وتوزع عادة، فإن فاصل زمني بسيط 95 للتنبؤ للمراقبة التالية في سلسلة زمنية هو 91 قبعة بيإم 1.96 هاتسيغما، 93 حيث هاتسيغما هو تقدير للانحراف المعياري لتوزيع التوقعات. في التنبؤ، فمن الشائع لحساب 80 فترات و 95 فترات، على الرغم من أن أي نسبة يمكن استخدامها. وعند التنبؤ بخطوة واحدة إلى الأمام، فإن الانحراف المعياري للتوزيع المتوقع هو تقريبا نفس الانحراف المعياري للمخلفات. (في الواقع، يكون الانحرافان المعياريان متطابقين إذا لم تكن هناك معلمات يتم تقديرها مثل طريقة الصفيحة، وفيما يتعلق بطرائق التنبؤ التي تنطوي على معلمات ينبغي تقديرها، يكون الانحراف المعياري للتوزيع المتوقع أكبر قليلا من الانحراف المعياري المتبقي، على الرغم من أن هذا الاختلاف غالبا ما يتم تجاهله.) على سبيل المثال، النظر في توقعات صحن مؤشر داو جونز. القيمة الأخيرة من سلسلة لوحظ هو 3830، وبالتالي فإن توقعات القيمة التالية لل دجي هو 3830. الانحراف المعياري للمخلفات من طريقة نيف هو 21.99. وبالتالي، فإن فاصل التنبؤ 95 للقيمة التالية لل دجي هو 3830 مساء 1.96 (21.99) 3787، 3873. وبالمثل، يتم إعطاء فاصل التنبؤ 80 بحلول 3830 مساء 1.28 (21.99) 3802،3858. وتحدد قيمة المضاعف (1.96 أو 1.28) النسبة المئوية لفترة التنبؤ. ويعطي الجدول التالي القيم التي ستستخدم لنسب مئوية مختلفة. الجدول 1.2: المضاعفات التي تستخدم لفترات التنبؤ. ويفترض استخدام هذا الجدول وصيغة القبعة بيه ك هاتسيغما (حيث k هو المضاعف) أن البقايا توزع عادة وغير مترابطة. وفي حالة عدم وجود أي من هذه الشروط، لا يمكن استخدام هذه الطريقة لإنتاج فاصل زمني للتنبؤ. وقيمة فترات التنبؤ هي أنها تعبر عن عدم التيقن في التنبؤات. إذا كنا ننتج فقط توقعات نقطة، لا توجد وسيلة لمعرفة مدى دقة التوقعات. ولكن إذا قمنا أيضا بإنتاج فترات التنبؤ، فمن الواضح أن مقدار عدم اليقين يرتبط بكل توقعات. ولهذا السبب، يمكن أن تكون التنبؤات بالنقاط تقريبا بدون قيمة دون فترات التنبؤ المصاحبة. ولإنتاج فاصل زمني للتنبؤ، من الضروري أن يكون هناك تقدير للانحراف المعياري لتوزيع التنبؤات. وبالنسبة للتنبؤات من خطوة واحدة للسلاسل الزمنية، يوفر الانحراف المعياري المتبقي تقدير جيد للانحراف المعياري المتوقع. ولكن بالنسبة لجميع الحالات الأخرى، بما في ذلك التنبؤات متعددة الخطوات للسلاسل الزمنية، يلزم اتباع طريقة أكثر تعقيدا للحساب. وعادة ما تتم هذه العمليات الحسابية مع برامج التنبؤ القياسية ولا تحتاج إلى مشكلة المتنبئ (إلا إذا كان هو أو هي كتابة البرنامج). ومن السمات المشتركة لفترات التنبؤ أنها تزيد في الطول مع زيادة أفق التنبؤ. وفي المستقبل الذي نتوقعه، فإن المزيد من عدم اليقين يرتبط بالتوقعات، وبالتالي فإن فترات التنبؤ تنمو على نطاق أوسع. ومع ذلك، هناك بعض (غير الخطية) أساليب التنبؤ التي لا تملك هذه السمة. وفي حالة استخدام تحويل، ينبغي حساب الفاصل الزمني للتنبؤ على المقياس المحول، وتحويل نقاط النهاية إلى الوراء لإعطاء فاصل زمني للتنبؤ على المقياس الأصلي. ويحافظ هذا النهج على التغطية الاحتمالية للفاصل الزمني للتنبؤ، على الرغم من أنه لن يكون متماثلا حول توقعات النقطة.

Comments